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J.  Phys. A: Math. Gen. 16 (1983) 2615-2631. Printed in Great Britain 

The local geometric asymptotics of continuum eigenfunction 
expansions: 111. Boundary effects and coefficient singularities 

S A Fulling 
Department of Mathematics, Texas A&M University, College Station, Texas 77843, USA 

Received 8 February 1983 

Abstract. The effect of a boundary condition on the spectral density of a differential 
operator in one dimension is computed directly from the asymptotic behaviour of the 
eigenfunctions. From the properly normalised eigenfunction expansion, the contribution 
of the boundary to the diagonal value of the heat kernel at a point is obtained, and some 
properties of the special functions arising thereby are derived. A discontinuity, or other 
singularity, in the coefficient function of the operator is shown to have spectral effects 
quite analogous to those of a boundary, and the additional effects due to the coexistence 
of a boundary and a discontinuity are investigated to lowest order. 

1. Introduction 

This paper’s predecessors, I and I1 (Fulling 1982, 1983), have two main themes. 
(1) The much studied subject of the asymptotic distribution of the eigenvalues of a 
differential operator has a generalisation to operators with continuous spectrum, 
wherein the objects whose asymptotic behaviour is studied are, in the one-dimensional 
case, the Weyl-Titchmarsh-Kodaira spectral measures at a given point in space. 
(2) These asymptotics can be related, at least in one dimension, to the high-frequency 
asymptotics of the eigenfunctions-specifically, the WKB approximation as generalised 
by Froman (1966). A more detailed summary of this programme and its motivation 
has been given by Fulling (1981). The extension to higher dimensions is under 
investigation, as is the application of the results to the calculation of renormalised 
observables in quantum field theory with external (e.g., gravitational) potentials. 

Before we leave the one-dimensional case, it is instructive to see how our direct 
approach (in terms of eigenfunction expansions) yields the effect of a boundary 
condition on the asymptotics of spectral measures, and hence on various integral 
kernels (Green functions) associated with the operator. This paper presents rather 
detailed information on the principal spectral measure and the heat kernel of a 
self-adjoint second-order operator on the half-line. (It will be clear how the other 
spectral measures and other kernels can be similarly calculated should an application 
warrant.) This constitutes an explicit, detailed demonstration, in the one-dimensional 
prototype, of phenomena which are known, at least qualitatively, to occur in more 
general situations. In particular, the notion of a sum over (real) classical paths, in the 
sense of Balian and Bloch (1971, 1972, 19741, emerges naturally. The methods 
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employed have the charm of being just natural extensions of the techniques of 
elementary quantum mechanics. 

Finally, in the last section the same ideas are applied to differential operators 
whose coefficients are only piecewise smooth. It is suggested that there is a useful 
analogy between an isolated coefficient singularity and a boundary. 

Here is a summary of the content of the body of the paper. Papers I and I1 were 
concerned only with asymptotic expansions which are completely determined by the 
local behaviour of the coefficients (symbol) of the oeerator H under study. Therefore, 
H was replaced by a ‘locally equivalent’ operator H which coincides with H near the 
point xo of interest, but whose coefficients trivialise at infinity. The eigenfunction 
expansion for fi was then treated after the fashion of quantum scattering theory. In 
I and 11, xo was an interior point, and so the calculations were done for an operator 
6 of the form (2.1) with a potential V ( x )  of compact support defined on the whole 
real line. Also, xo was a point of smoothness of the original potential, so the new 
potential was assumed smooth everywhere. In this paper the operator will be defined 
on an interval with an endpoint at x = 0, where the Dirichlet, the Neumann, or the 
most general Robin (2.2) boundary condition is imposed. We pass to a locally 
equivalent C; potential on the half-line 0 s x <CO, leaving the boundary condition 
and the potential near the boundary intact, and solve the corresponding scattering 
problem in the WKB-Froman approximation. The expansions of the spectral measures, 
heat kernel, etc, at a point xo near the boundary can then be compared with the 
purely local expansion treated in paper I, where the boundary was ignored. Let us 
denote the difference between the two expansions by a subscript ‘B’. 

The picture of such situations which has been built up by several decades of 
research is the following, when specialised to the case at hand. The boundary correction 
dpg(A;x )  to a spectral measure does not necessarily become small as the eigen- 
parameter A approaches infinity, even if x is far from the boundary. That is, the local 
expansion is not an asymptotic approximation, in the technical sense, to the true 
spectral measure. However, dpigk, as a function of A, exhibits oscillations whose 
frequency increases with x .  These oscillations cause many integrals with respect to 
d p g  to be rapidly decreasing functions of x. Thus, for example, the boundary 
correction to the heat kernel, Ks(r, x, x), is heavily concentrated near the boundary 
if t is small. At any interior point x, the local (boundary-free) expansion of K ( t ,  x, x )  
is genuinely asymptotic, to any order in t. However, this expansion is not uniform in 
x, and hence to get a valid approximation to the integral of K ( t ,  x, x )  over any interval 
with 0 as an endpoint it is necessary to include the integral of KB, which makes a 
finite-order contribution. Related remarks apply to the vacuum energy density of a 
quantised field near boundaries (Deutsch and Candelas 1979, Kennedy et a1 1980). 
This behaviour is prototypical of the difference between the spectral asymptotics of 
two locally equivalent operators. 

All these features show up quite explicitly in the calculations presented in §§ 2 
and 3. (The treatment is not entirely self-contained, since at one point we must appeal 
to the independently established local validity of the heat-kernel expansion to fix 
some constants of integration.) In 0 2 we derive the formula (2.18) for dpio(A, x )  in 
terms of the amplitude at x of the scatterin wavefunction for energy A. This is 
expanded as a power series (2.25) in both A-” and x, with ‘geometrical’ coefficients 
determined by the Robin constant and the behaviour of the potential right at the 
boundary. In § 3, (2.25) is used to compute KB(f, x, x )  (3.7) and its integral over x 
(3.10). The latter is a power series in t’”, which agrees numerically with known 
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results (Gilkey 1979). The former must be expressed in terms of certain transcendental 
functions which generalise the incomplete gamma function. Their properties, including 
limiting behaviour for large and small argument, are investigated in theorem 3.1 .  

Section 4 raises the question of what happens when V ( x )  is not smooth. An 
isolated coefficient singularity has spectral effects similar to those of a boundary, 
because it causes non-trivial reflection amplitudes in the eigenfunctions. We consider 
the case of a finite jump discontinuity in V or one of its derivatives, because it can 
be treated by a simple extension of the previous methods. Like the boundary, the 
jump contributes oscillations to the spectral measure everywhere, with frequency 
proportional to the distance from the jump, and these oscillations produce in the heat 
kernel, etc, an extra term which is significantly large over a finite neighbourhood of 
the jump and dies off rapidly with distance from it. Finally, the combined effect of a 
jump and a boundary is compared, to lowest order in u-l, with the separate effects 
of the two elements. 

2. Spectral measures near the boundary 

Consider a differential operator of the form 

H = - (d2/dx2) + V ( X )  ( 2 . 1 )  
where V is smooth (C"), V ( x )  = 0 for x sufficiently large, and V ( x )  tends to a finite 
limit as x + 0. Then x = 0 is a regular endpoint in the sense of Sturm-Liouville theory, 
and x = CO is a singular endpoint of the limit-point type. The boundary condition 

$'(()I = K $ ( O )  (2 .2)  
for some K E R makes H essentially self-adjoint (and bounded below) on the domain 
of all C" functions $ satisfying ( 2 . 2 )  and vanishing at large x (see, e.g., Reed and 
Simon 1975). The Neumann boundary condition is the case K = O .  The Dirichlet 
condition 

* ( O )  = 0 ( 2 . 3 )  
may be thought of as the limiting case K = +CO, but will be treated separately in our 
computations. 

The general classical solution of the differential equation 

(2.4) 
2 

H*!J = A r L p  A = w  w = IPI 
has for large A the WKB-Froman expansion 

(2.56) 

or a linear combination of these for the two possible signs of p .  Under the given 
conditions on V, this expansion is uniform in x .  With the usual normalisation, one has 

Yo = 1 Y2= -tv Y4 = Q( V " -  V 2 )  (2.6) 
etc (see theorem 4.1 of I). 
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We choose the arbitrary starting point xo 
spectral measures (Kodaira 1949, Titchmarsh 
are defined, as in I, by 

in (2.5) to be the point at which the 
1962) are to be evaluated. The latter 

where dE,(x,y) is the differential of the kernel (Girding 1954) of the projection 
operators in the spectral decomposition 

m 

H =  AdEA (2.8) I_, 
and $ A o  and ~ , b ~ ~  are the solutions of (2.4) satisfying 

(2.9) 
(Under our assumptions on V,  the spectrum is continuous at large A and hence we 
expect dEA (x, y )/dA to make sense as a function of A , )  

By analogy to (4.6) of I, we determine dpik  (asymptotically) by equating (2.7) to 
an alternative representation of dEA(x, y )  which is completely known. Attention may 
be restricted to A > 0. Let &(x) be the solution of (2.4) which satisfies the boundary 
condition (2.2) (or (2.3)) defining H and is normalised so that 

k 
*:;I (xo) = 6 , .  

&(x)-sin(ox +S) a s x + m  (2.10) 

(where S depends on K and w ) .  Only solutions of (2.4) proportional to 4u may appear 
in the eigenfunction expansion associated with H. It is well known that the functions 
{ ( ~ / T ) ” ~ # J ~ ( X ) :  w > 0} are orthonormal in the sense of the Dirac delta in the variable 
W .  From these two facts it follows that 

dEA(x, Y ) = ~ T - ’ ~ ~ ( x ) ~ , ( Y )  dw (2.11) 

(Kodaira 1949). 
Obtaining dKo0(A; xo) from (2.7) and (2.11) amounts to calculating l4,(~~)1~. 

Therefore, we express 4u (for large w )  in terms of a basis of solutions with the WKBF 
behaviour (2.5): 

(2.12) 

A, and B, are determined by the two boundary conditions, (2.2) and (2.10). Recall 
(Froman 1966, Fulling 1983) that the WKBF functions satisfy 

4ld = Aldrlc + B,*-,. 

* b - iPNP*P, (2.13) 

where 

Yp = Re Np = t(Np + N-p) = Y, ( 2 . 1 4 ~ )  
is the series (2.56), and 

1 1 d  
21 2 p  dx 

Im Np = y ( N P  - N-p) =--In Y,. (2.146) 

(2.15) 

Thus, in the asymptotic limit, 
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The Robin boundary condition (2.2) becomes 

A,(K -ioN,)$,(O)+B,(K +iwN-,)$-,(O) = 0 

or 

exp(2iw lox" Y,(x') dx' K + iwN, (0) 
B, ~- iwN, (0 )  
A,= - (2.16) 

On the other hand, comparing (2.10) with (2.12) and (2.5) (where Y, = 1 at sufficiently 
large x),  one sees that 

(2.17) 

These last two equations are consistent and determine A ,  and B, up to an irrelevant 
overall phase. (These, and similar results, are valid modulo terms of some arbitrarily 
high order in w - l ,  determined by the order at which the (divergent) series Y in (2.5) 
is truncated; beyond that order A, and B, should not even be regarded as well 
defined.) For the Dirichlet problem (2.3), 5, is given by (2.16) with the fractional 
prefactor omitted, as one would have guessed by taking K + 03. 

Set x = y = x o  in (2.7) and successively use (2.9) and (2.11), (2.12) and (2.5), (2.16) 
and (2.17), and )lu/ = 1: 

IA,/ = $ = lB,l. 

dpoo(A; x )  = 2~- '14 , (x) I~  d o  

= 27r-l lA, Y, ( x ) - ~ ' ~  + B, Y-, ( x ) - ~ ' ~ / ~  dw 

= T  - 1  Y,(x)-'(l+Rel,(x))dw. 

If l,(x) were 0, this would be the formula valid when M is the whole real line and 
V E C; (R); see (4.7) and (4.9) of I. Hence the difference between dpoO with boundary 
and d p  Oo without boundary is 

dpi0(A;x)=rr- 'Y,(x)- '  Re&,,(x)dw. (2.18) 

This is our main result. Here 5 is defined by (2.16) (with (2,14)), while Y is the same 
as in I and is described in (2.5) and (2.6) of the present paper. Formulae for dp; = dpAo 
and dpkl could be obtained similarly, using (2.7), (2.9) and (2.11)-(2.13). 

The qualitative behaviour of 

(2.19) 

is instructive. It is an oscillatory function, whose amplitude does not become small 
as w + 03 or as x + 03. However, the period of the oscillations with respect to one of 
these variables tends to zero as the other variable, regarded as a parameter, approaches 
infinity. These observations are consistent with the general situation described in I. 
Consider an operator H defined on the whole line, whose potential PE C," (R) 
coincides with V in a neighbourhood of x. (One says that H and fi are 'locally 
equivalent'.) The asymptotic expansion of the poo of fi, derived in I, is not asymptotic 
to the poo of H, because the remainder is dominated by p io ,  which does not decrease 
rapidly. Nevertheless, if one stays far enough away from the boundary, p i o ( w ;  x )  will 
oscillate so fast that it will make an insignificant contribution to an integral 
l f ( w ) p o o ( w ;  x )  dw if f is a sufficiently slowly varying function. (This must be made 
more precise in the context of any particular application, either by hard analysis of 

00 
p B ( ; x ) T d p  io ( w ; x ) /dw 
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the integrals or, more likely, by an a priori proof, as in Greiner (1971) or Fulling et 
a1 (1981), that the object being calculated is completely determined by the local 
behaviour of V . )  Similarly, the detailed behaviour of p p ( w ;  x )  at large w should be 
invisible in a quantity that involves a 'smearing' in x over a distance scale large 
compared with the wavelength, 2 m - ' .  

Remark 2.1. For fixed x ,  the angular frequency of oscillation of p i o " ( )  is, to lowest 
order, 2x (see formulae below). For operators H with discrete spectra, it is known 
that, roughly speaking, the asymptotic density of eigenvalues manifests oscillations 
with frequencies equal to the lengths of any periodic orbits of the classical-mechanical 
system whose Hamiltonian is the principal symbol of H, with specular reflection at 
the boundary (see Balian and Bloch 1972, Duistermaat and Guillemin 1975 and the 
work of Colin de Verdiere and Chazarain referenced in the latter). Our result suggests 
that the 'local' version of this principle is the following: dE,Z(x, x )  exhibits oscillations 
(as a function of w )  with frequencies equal to the lengths of any classical paths which 
start and end at x (not necessarily with initial and final directions of motion the same).  
Better approximations to the effective frequency of oscillation can be obtained by 
keeping higher-order terms in the series Y,(x') in (2.16). In particular, since (Campbell 
1972) the coefficient of V" in Y Z n  is 

1 

= (-l)"( ') - ( 2 n ) !  (2n - 3)!! 
22n(n  !)*(2n - 1) = - 2"n ! n 

all the terms in Y which do not involve derivatives of V can be summed to yield 
(1 - w  V)'". (This is the leading term of a semiclassical expansion in the sense of 
Wilk et a1 (1981) and Fujiwara et a1 (1982).) In this approximation the exponential 
factor in (2.16) becomes 

- 2  

exp( i [ox" 2 ( w 2 -  V(x'))l/' dx'). (2.20) 

The integral here can be interpreted (cf Balian and Bloch 1971, 9: 1I.A) as the action 
(Hamilton's characteristic function) of the trajectory from x to the boundary and back, 
traversed by a particle with energy w 2 .  The derivative of the integral with respect to 
w can be regarded as the effective frequency of oscillation of p i o ( w ) .  Again there is 
a close parallel in the case of discrete spectrum: The well known WKB formula (Messiah 
1961, (VI.54)) implicitly determining the Nth eigenvalue (giving N as a function of 

involves the same integrand, but the integral is extended over the entire orbit of 
a bound classical particle. The derivative of N approximates the reciprocal of the 
spacing between eigenvalues, and hence is an oscillation frequency of the eigenvalue 
density. 

Let us investigate pLo in more detail, by isolating the leading oscillatory factor 
and expanding the rest in negative powers of w. The factor Y-' in (2.18) is simply 
equal to the boundary-free poo, and its expansion has been given in (4.10) of I (where 
E = - V ) ;  it begins 

Y ( x ) - ' -  1 + ; V ( x ) w - 2 + Q ( -  v ' ' ( x ) + 3 V ( x ) 2 ) w - 4 + O ( w - 6 ) .  (2.21) 
For fixed K # CO, the prefactor in (2.16) is found to have the expansion 

(2.22) 
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(The expansion of N is taken from 11, or obtained from (2.14).) The rest of (2.16) is 

- exp( 2i w Io’ Y (x’) dx ‘) 
m - -eZimx “ 1  T ( 2 i  f wl-’” Jox ~2, , (x‘)dx’)  

,,,=om n = l  

2 

= - e ~ ’ ” ~ { 1 + 2 i w - ’ J  Y Z - Z ~ - ~ ( J  ~ 2 )  

+iw+ y2)’] +o(w-4)].  

Multiplying (2.21) and (2.23), one obtains 

p p  (Dirichlet) 

- -Re(e2’”‘( 1+2iw-’J Y ~ + ~ - ~ [ $ V ( X ) - ~ ( J ’  YZ)’]  

(2.23) 

V”(X) + 3 V(X)Z+ O(x)) + O ( w  3}) ( 2 . 2 4 ~ )  

(where an abbreviated notation for integrals from 0 to x is used). The formula for 
the Robin case is obtained by multiplying by (2.22) before taking the real part: 

p i 0  -Re( e2iox( 1 + iw-’( 2 J’ ~2 - 2K) 

Since ordinarily pio is of practical importance only near the boundary, and 
expansion (2.23) is already non-uniform in x, it is natural to make a further expansion 
in powers of x. This yields series whose coefficients are dimensionally homogeneous 
polynomial functionals of K and V on the boundary: 

p io(w;x) -Re  eziWx 2 2 p i (&iLP~n-p  (2.25) ( n = O  p = o  

For the Dirichlet case the first few coefficients are 

PoBqp = (0,O) 00 
PBOO = -1 

p E p  = (0, i v ,  -Iv) 
P E 0  = 0 p;:1 = & t l  

p& = (0, SV’,  -w, 0) 
pB42 00 = - $”+’ 

p g 4  = $( V”-3 V2). 
2 v2 

00 
PB43 = -$(V”-3v2)  

( 2 . 2 6 ~ )  
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Here V and its derivatives are evaluated at 0. For the Neumann-Robin problems 
only the terms up to n = 3  are listed, since to find p i %  one would need one more 
term in (2.22): 

p& = (0, -2iK) 00 
p BOO = 1 

pi ;p  = (0, -iv, i v -2K2)  

(2.26b) 00 00 
P B 3 0  = 0 p B 3 1  = -3v’ 
p z 2  =:V’-2KV pi:3 = i(tv’- ~ K v  + 2 ~ ~ ) .  

Obviously, similar expansions for p i 1  and p: could be derived, The coefficients 
p & [ ~ ,  VI are the fundamental ‘spectral invariants’ which determine the behaviour 
of Green functions, etc, of H near the boundary. For example, from their analogues 
in higher dimensions it should be possible to reproduce the results of Deutsch and 
Candelas (1979) and Kennedy et a1 (1980) for the singular behaviour of the energy 
density of a quantised field near a boundary. 

Remark 2.2. p E p  is of order n, if the order of a monomial in K and derivatives of V 
is defined as the sum of 

(i)  the degree in K ,  

(ii) twice the degree in V (and its derivatives), 
(iii) the total number of differentiations. 

Remark 2.3. PE, is real if p is even, pure imaginary if p is odd. Also, p E 0  = 0 
except for p BOO = f 1. 

Remark 2.4. In expanding the spectral density in powers of w-l, we have committed 
willy-nilly an expansion in K .  That is, we are treating the Robin boundary condition 
by perturbation about the Neumann case. This is also true of the standard expansion 
(3.8) of the heat kernel in powers of t. Balian and Bloch (1970) have emphasised 
that for some applications it is not appropriate to assume that K is small. Rather, 
one may need an expansion which is uniform in K .  (The same argument can be made 
for the potential V, leading to a ‘semiclassical’ expansion (Wilk et a1 1981, Fujiwara 
et a1 1982), where the order of a term is determined only by the number of differenti- 
ations.) In the present framework, such an expansion is obtained by treating 1 + i w - ’  
as a quantity of order unity in expanding C w ;  thus (2.22) is replaced by 

00 

K +iwN,(O) W ~ - K ~ - - ~ ~ K W  i K W  
K -iwN,(O) - w 2 + K 2  ( - 1 + Z z  V ( O ) ~ - ~ + O ~ W - ~ ) )  

and the w-dependent coeffiicients in this series are carried intact into the new versions 
of (2.246) and (2.263). As K + +a the results will go over smoothly into the formulae 
for the Dirichlet problem, so the latter no longer appears as such a singular case. 
Unfortunately, with such complicated expressions it is unlikely that calculations 
parallel to 0 3 (for instance) can be carried out in closed form. 

3. Heat kernel near the boundary 

As an explicit example of the significance of the expansion of &’, let us compute the 
boundary correction to the heat kernel, K(t ,  x, y ) ,  on the diagonal ( x  = y ) .  Recall 
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(I, (3.2)) that 
m 

K ( t ,  x, x )  = e-At dpoo(A ; x) .  I_, 
Thus 

m 

KB(f, X, X )  - n-l e ~""p~o((w; x )  dw 

is the boundary correction to the small-t asymptotic form of K ( t ,  x, x).  The contribu- 
tion from dpoo(A, x )  at small A (i.e., ---CO < A < A ,  A > 0 arbitrary) is an analytic function 
of t, and our initial calculations will be meaningful only modulo such terms. We 
confine our attention to the situation described at the beginning of § 2, in which the 
spectral expansion (2.25) is rigorously asymptotic; it would also be possible, along 
the lines of I, § 3, to discuss the more general case (unbounded V, a finite interval 
M, etc) where the correspondence between the coefficients in the two series is more 
formal. Since the asymptotic validity of the resulting expansion of the heat kernel is 
not in doubt, complete justification of the estimates on the remainder terms in the 
intermediate steps will not be provided. 

It would be convenient to place the lower limit of integration in (3.2) at o = 0, 
were it not for the negative powers of w in the integrand, (2.25). As in I, we circumvent 
this spurious divergence by studying 

(3.3) 

and truncating the series (2.25) while 2m - p  + 1 is still positive. The integrals which 
are then needed are (Gradshteyn and Ryzhik 1965, (3.896.4) and (3.952.1)) 

00 

1 1/2  -1/2 - x 2 / r  cos 2wx d o  = g n  t e [ e-"2r 

J o  

- U 2 1  1 1/2Xf-3 /2  - x Z / r  w e sin 2wx dw = z.n e .  C (3.4) 

( 3 5 2 )  

(3.5b) 

a2KB/at2 = -a(3.5b)/at + $ ~ - ' / ~ t - ~ / ~  ($3x"'PK3 + O ( X 3 ) )  

( 3 5 )  

In each bracketed expression, all terms of order four or less in the sense of remark 
2.2 have been kept. 

++.n -1 /2  r -1/2 e-x2/r(poe044+O(x))+O(ln t ) .  



2624 S A  Fulling 

(3.6a) 

(3.66) 

Then from (3.5) we have 

For fixed x f 0, KB(t, x ,  x )  must vanish faster than any power as t + 0, since the local 
heat-kernel expansion constructed without reference to a boundary is a valid para- 
metrix there (see I, theorem 3.2). This property is possessed by the (see theorem 
below), but not by the terms containing C1 and C2 unless they vanish, which, therefore, 
they must do. This appeal to prior knowledge of the structure of the heat kernel 
compensates for our ignorance of p i o  at small A .  

Let us establish and verify, through the first few orders, the relationship between 
the p t n p  coefficients and the spectral invariants in the well known expansion 

where E is sufficiently large compared with f 1 l 2  (Gilkey 1979, 9 3). (In higher 
dimensions this integral is still one dimensional and defines a function on the boundary 
of M.) Since the integrand falls off very rapidly with x ,  this integration can be 
interchanged with the summations and r' integrations in (3.7) and (3.66) and the upper 
limit can be taken to m, Using 
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and for the Neumann-Robin case 

EB 0 - 4  -1 

EB 1 -1 -4(-V+2K2) 

= ( 4 ~ ) - " ~ ( - 2 ~ )  
(3.116) 

in agreement with Gilkey (1979, theorem 3.4), where the notation is S = - K ,  €Y = - V. 
In conclusion, we investigate in detail the functions Im,s which appear in (3.6) and 

(3.7). (We are primarily interested in 4 an odd integer.) 

E;/2 = (4T)-1/2;(-V'+3KV-22K3) 

Lemma 3.2. I l , q  can be expressed in terms of the incomplete gamma function (Grad- 
shteyn and Ryzhik 1965, 3: 8.35): 

(3.12) I ~ , ~ ( ~ ,  t )  =X2-qr(t4 - 1, x 2 / t ) .  

Proof. Let 

y = x 2 / r  1 a = y q - 1  

I t , q ( x ,  t )  = 1,' ( t  1 e dt' 

Then 

I - q / 2  - -x2/I1 

y l =  X 2 / t ' .  (3.13) 

CD 

= x ~ - ~  y"-'  e-' dy =x2-'r(a, y) .  

Lemma 3.2. X ~ - ~ ~ I , , ~ ( X ,  t x 2 )  is independent of x .  
This is easily established from the definition (3.6) by induction on m. 

Theorem 3.1. Let ( m  = 0, 1,2, . . . ) be defined by (3.6). Then 
(i) For m 2 1,  the Im,q satisfy 

(3.14) - -2  1 Im,q+~(x, t )  = X  ((24 - l ) I m , q ( X ,  t )  + I m - l , q - Z ( x ,  t ) ) .  

(ii) In the limit t << x 2 ,  there is an asymptotic expansion of the form 

I m , q ( x ,  t )  - X - 2 m f 2 m - q / 2  1 + f a n ( x 2 / t ) - n ) .  (3.15) 
n = l  

(iii) For q Z 2, 0, -2, -4, .  . . , there exist numbers p m ( 4 )  such that 

(In particular, f1(4)  = r ( f 4  - l) .)  For q # 2, 0 ,  -2, . . . , Im,q is given by 

(3.16) 

(3.17) 

(3.18) 
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(The second term is an entire function of x2. )  Therefore, in the limit x << t ' I2 ,  if 4 < 2 
or m = 0 the dominant term is the constant term, ( -1)  t r(i4 -m)/l%4),  whereas 
if 4 > 2  and m 3 1 the dominant term is r($- 1)x2-'tm-'. 

m m - q / 2  

The statements in the theorem generalise known properties of the incomplete and 
complete gamma functions. In its proof we shall occasionally use the notations (3.13).  

Proof of (i) and (ii). If m = 1 ,  then (i) is equivalent by lemma 1 to 

r(a + 1,  y )  = d ( a ,  y ) + ~ ! ~  e-' 

(Gradshteyn and Ryzhik 1965, (8.356.2)), which is established by an obvious integra- 
tion by parts. For m > l the relation follows immediately by integration. It is obvious 
from the definition that 

x-2pIm,q(x, t)/1m,q-2p(x, t)  = o(Y-'). 

Im,q(x, f)=x-21m-1,q-4fX- 4 ( a  -1)Im-l,q-6+ . . . . 
Hence iterating (i) in 4 yields an asymptotic series 

-1  Iterating this result in m, one eventually reaches a series of powers of y , times e-'. 
For example, 

12.q  = x - 2 { ~ - 2 1 0 , q - 8 + ~ - 4 [ t ( 4 - 4 ) - 2 ~ 0 , q - 1 0 +  . . } + x - ~ ( ~ ~ - ~ ) ( x - ~ ~ o , ~ - I o +  . . .)+ . . . 
-4  4-q/2 = x r e-'[1+ (4  - 6)y- '+  O ( Y - ~ ) ] .  

In general, the leading term is 

-2m 2m-q'2 e--'. Im,q-x I m - 2 . q - 8 -  . . . - x  10,q-4m = x  t -4  -2m 

Proof of (iii). For m = 0, (3.18) is the power series of the entire function = t -q /2  e-', 
and the other statements are vacuous. We assume all the statements for m - 1 and 
prove them for m. By virtue of (3.18), the integral in (3.17) converges (at the upper 
limit) if 4 > 2m. Expressing all three terms of (3.16) by (3.17), and eliminating 1m-l,q+2 
by (3.14), we obtain 

which vanishes by the inductive hypothesis. Thus (3.16) is consistent with (3.17) at 
large 4 ; fm ( 4 )  for small 4 is defined by solving (3.16) for its middle term and integrating. 
Next, we prove (3.18) for 4 >2m: 
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(x2/t1)" dt' , m-2-a  (-1)" T(a + n  + 2 - m )  c -  ,,=o n!  T ( a + n + l )  
- J,m ( - l ) m - l ( t  

where (3.18) for m - 1 guarantees convergence of the integrals at CO and has been 
used to re-express the integrand in the last term. According to lemma 2 and i3.17), 
the middle term equals x2m-qFm(q).  The last term can be integrated termwise, and 
the whole expression then reduces to (3.18). Finally, the series for with q c 2 m  
(but q # 2,0,  -2, . . .) can be obtained from the cases already known, by solving (3.14) 
for Im.q and iterating as many times as required. A series obtained in this way must 
be consistent with (3.18) if q is actually still in the domain q > 2 m ;  this guarantees 
the existence of a certain algebraic relation among the coefficients in the final term 
of (3.18) for adjacent values of q and m. Because r is meromorphic, this relation is 
valid for all q (away from the poles at q = 2,0,  . . .); consequently, the series continues 
to have the form (3.18) when q is outside the original domain. 

Comments. Part ( i i )  displays clearly the rapid decrease of every term in the heat 
expansion (3.7) as t + 0 with x # 0 fixed; the terms in (3.10) come entirely from a 
region near the boundary, which shrinks as t + 0. On the other hand, (3.10) cannot 
be obtained by inserting (3.18) into (3.7) and integrating finitely many terms; (3.18) 
carries terms of low order in K and Vcn)(0) arbitrarily far out into the series, 
accompanied by correspondingly large negative powers of t. Of course, (3.18) does 
yield an expansion of KB in powers of the distance from the boundary which is valid 
for fixed t # 0. Lemma 2 can be interpreted as saying that Im.¶(x,  t )  is a function only 
of the variable y = x 2 / t ,  except for a trivial scaling factor. It follows that there is no 
expansion of KB in elementary functions for x and t simultaneously small, since y 
ranges over the entire interval 0 < y < CO inside any neighbourhood of the origin. 

The e-"*" behaviour of K B ( t , x , x )  for large x or small t is reminiscent of the 
characteristic exp(-lx -yI2/4t) behaviour of heat kernels, K ( t ,  x ,  y ) ,  at separated 
arguments. This should not come as a surprise. The Dirichlet and Neumann problems 
can be solved by the method of images (McKean and Singer 1967). In that approach, 
KB(f, x, x )  is found as *Ko(t, x, - x ) ,  where KO is the heat kernel for a problem without 
boundary. 

4. Piecewise smooth coefflcients 

The series derived in paper I for the spectral density, poo(w ; xo), and the corresponding 
series for the heat kernel, K(t ,  xo, xo) ,  contain coefficient functions involving increas- 
ingly high derivatives of V(xo). If some derivative of V fails to exist at xo,  all the 
terms of these series are undefined beyond a certain point-although poo and K 
themselves are completely meaningful and finite at xo .  In fact, the series are not even 
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trustworthy at other points x where V is smooth, because the derivation of the 
expansion of poo(w ; x )  assumes the global validity of the WKBF expansion (2.5) for 
the normalised eigenfunctions, but the WKBF expansion breaks down at x o .  (Actually, 
the heat-kernel expansion is valid at any point of smoothness, as is well known, but 
it will be seen that it is not valid uniformly in distance from the singularity at xo.) 

A moment's contemplation convinces one that a localised singularity ought to have 
spectral effects very similar to those of a boundary. (Indeed, in quantum mechanics 
it is traditional to regard a Dirichlet boundary as an infinite jump discontinuity in the 
potential (Messiah 1961, 0 III.4).) If the potential has compact support, one has a 
basis of scattering eigenfunctions with the behaviour indicated in (4.1) of I: 

(4.1) 

(Here up is a number of modulus one that can be chosen to simplify the relation 
between q5p and the However, because of the singularity, it is no longer true 
that, as stated in corollary 4.1 of I, R, = O  and lTpl = 1 to all orders of the WKBF 
approximation. Instead, the reflected and transmitted waves will be of some finite 
order, determined by the nature of the singularity. The eigenfunctions for a boundary- 
value problem represent an extreme case where the reflected wave has intensity equal 
to that of the incident wave (see (2.10)). Since the boundary effects calculated earlier 
stem from the quantity Re &,,(x) representing the interference between incident and 
reflected waves (see (2.18) and preceding calculation), it is clear that qualitatively 
similar effects will appear in the present situation. 

For a certain class of singularities, detailed calculations can be done by an immediate 
extension of the methods employed previously in this series of papers. We make the 
following assumptions: V ( x )  is a function of compact support on R. V ( x )  is infinitely 
differentiable except at x = 0. The derivatives of order less than N exist at 0. The 
Nth  derivative possesses finite, unequal right- and left-hand limits at 0, which we 
denote by V"'(+O) and V"'(-0). The higher derivatives also have finite limits from 
each side (possibly unequal). 

The principal spectral density is given by (4.7) of I: 

(4.2) 

The ensuing calculation is parallel to those in 9: 4 of I and 9: 2 above. On each side of 
the singularity, express 4*,(x) as a linear combination of WKBF basis functions, 4, 
and $-,. The eight coefficients can be determined, apart from some phases which do 
not enter (4.2), by imposing (4.1) and the conditions that 4*, and 4L, are continuous 
at 0. Simplify the results by means of the easily verified identity 

(4.3) 
Define pyo(o; x )  to be the difference between p o o ( w ;  x )  and the spectral density 
(- Y,(x)-*)  for a smooth potential. One finds 

00 
p (w ; x )  = T dFoo/dw = $(14,(x)12 + I&, (x)I2). 

4 Y, (+ 0) Y, (-0) + IN, ( -0)  - N, (+O) j 2  = IN, ( t o )  + N ,  (-0) I*. 

\ I  

This is the analogue of (2.18) for the problem at hand. 
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Recall that 
m 

N , ( x ) = l +  c o-"N"(x) 
n =2 

where the highest derivative occurring in N,, is V(n-2). Thus p:' is of order KN-' 
under our assumptions. In particular, if N = 0, then 

(4.5) 

00 Furthermore, pJ ( w )  oscillates with an angular frequency equal in lowest order to 
21x1 (the length of the classical path to the singularity and back). Clearly, one could 
calculate K(t ,  x, x )  as in § 3 and would obtain the characteristic factor e-x2'' once 
more. That is, for fixed t, the heat kernel contains a 'lump' spread over a neighbourhood 
of x = 0, which is completely missing from the usual local expansion of K .  Of course, 
this term vanishes faster than any power of t as t + 0 for fixed x f 0. Nevertheless it 
yields, via (3.9), a contribution of finite order in t"' to the integral of K over a fixed 
interval around 0. (Note that all the terms in the expansion of the quantity in (4.5) 
will be well defined and finite, unlike the x integrals of the terms in the usual heat-kernel 
expansion, which would be infinite or ambiguous in the present case whenever they 
contain products of derivatives of V of order greater than N.)  

In accordance with the general principle of the locally equivalent potential, one 
would expect these conclusions about the situation in the immediate neighbourhood 
of 0 to remain applicable when the potential has other singularities elsewhere, is not 
of compact support, etc. The spectral effects of these remote features, weakened by 
distance, will be superimposed-perhaps nonlinearly+m the dominant, locally deter- 
mined phenomena. Perhaps the simplest example in which the joint effects of two 
singular features can be studied is an operator characterised by both a jump discon- 
tinuity and a boundary. 

Let V(x) be as before, except that this time the domain M terminates on the left 
at a Dirichlet endpoint: +(-L) = 0. A complicated calculation similar to the previous 
ones yields 

poo(w ; x )  - Y,(x)-' 1 + R e  LUJ(x) + (41~1'- 1) 

x [  l-Re[e-i"W exp(-2iwIo' Y(x')dx')]]) fo rx<O (4.6) 

where 

0 

w = 2  YW(X') dr'. I-, (4.9) 

(The almost equally complicated, but less interesting, formula for the case x > O  is 
omitted.) W can be interpreted as the action of the closed orbit of length 2L inside 
the 'potential well' -L < x  < O  (cf remark 2.1). lBI is the modulus of the amplitude 
of the eigenfunction inside the well; the fact that it oscillates with frequency W has 
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the quantum-mechanical interpretation that a sequence of ‘resonances’ exists with 
that spacing, due to the trapping of waves by reflection from the potential step (Messiah 
1961, § 111.6). 

Obviously the first two terms in (4.6) are, respectively, the basic local spectral 
density for a smooth potential and the contribution of the boundary (cf (2.18) and 
(2.16)). Identifying pYo of (4.4) with a part of the remaining term is not so easy, 
however. Let us consider the case N = 0, so that the number multiplying eioW in (4.7) 
is of order U - *  (see 4.5)), and let us expand the denominator in (4.7) as a geometric 
series and work only to the lowest non-trivial order. After much algebraic reduction 
one obtains 

pOO(w;x)- Y,(x)-’(l+Rel,(x)) 

= p y  (U ; x 1 - i( V(+O) - V ( - 0 ) )  

x Re e iwW -4 Re[ eZiwW exp( 2io 1,: Y(x’) d~’) ]}o- ’  ( 
+ o ( ~  -3) for x < 0. (4.10) 

That is, all the terms in the remainder with frequencies independent of W go together 
to make up pya, at least up to third order. (In fact, this has been verified by the author 
up to O(w?) .  Presumably it holds to all orders.) Those terms have frequency =21xI, 
and thus effectively dominate when lx I << L. 

The remaining two terms in (4.10) have approximate frequencies 2L and 4L + 2x = 
2L +2(L - Ixl), respectively. In the classical-path interpretation (remark 2.1), the 
first of these represents a path which returns to its starting point after reflecting off 
each end of the potential well, and the second corresponds to a particle that bounces 
off the boundary, the potential step, and then the boundary again, before returning 
to x. (The paths that reflect from only one end of the well have already been 
encountered in pB and p,.)  Paths which hit the potential step more than once are met 
at higher order in U - ’ ;  for instance, the fourth-order terms include some corresponding 
to path lengths 2L + 21x1, 4L and 4L + 2(L - 1x1). All these terms arising from the 
combined presence of the boundary and the discontinuity give rise to terms in the 
heat kernel which vanish rapidly as t + 0, uniformly in x (at least as They are, 
however, expected to make finite contributions, throughout the potential well, to the 
renormalised energy density of a quantum field (a generalised Casimir eff ect-see 
DeWitt (1975), Dowker and Critchley (1977), Balian and Duplantier (1977, 1978), 
etc). 

A slight extension of the calculations of this section would give the spectral effects 
of a potential with a term proportional to the Dirac delta distribution. More general 
types of singularities, such as 

V ( x )  - (x I - N  asx+O, 

must give rise to similar effects, but quantitative investigation of them would require 
other techniques (namely, a WKBF expansion in the presence of coalescing turning 
points). 

It is hoped that the analogy pointed out here between boundaries and coefficient 
singularities will be useful in approaching higher-dimensional problems in which the 
symbol of the operator has singularities localised on lower-dimensional submanifolds. 
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